Becas Fundación Educa Edtech: Avanza en Formación, crece en oportunidades. SOLICITA BECA AVANZA

¡Aplicar ahora!

Inscríbete ahora en este Master Arquitectura Big Data que te ofrece Euroinnova International Online Education, recibe la mejor formación y destaca profesionalmente

Modalidad
Modalidad
Online
Duración - Créditos
Duración - Créditos
1500 horas
Becas y Financiación
Becas y Financiación
sin intereses
Plataforma Web
Plataforma Web
24 Horas
Equipo Docente
Equipo Docente
Especializado
Acompañamiento
Acompañamiento
Personalizado

Opiniones de nuestros alumnos

Media de opiniones en los Cursos y Master online de Euroinnova

Nuestros alumnos opinan sobre: Máster en Arquitectura Big Data

4,6
Valoración del curso
100%
Lo recomiendan
4,9
Valoración del claustro

Rubén M

VIZCAYA

Opinión sobre Máster en Arquitectura Big Data

Los profesores han sido muy atentos en todo momento y además me han ampliado la información cuando lo he necesitado.

Tania N

TENERIFE

Opinión sobre Máster en Arquitectura Big Data

Formación interesante, organizada y completa. La plataforma es fácil de usar. Además, me han enviado todos los manuales. Lo recomiendo

Mikel F

TARRAGONA

Opinión sobre Máster en Arquitectura Big Data

Me quedé muy satisfecho con la realización de este curso, gracias al cual pude mejorar mis condiciones laborales y encontrar un nuevo mercado en el que centrarme

Marina K

MÁLAGA

Opinión sobre Máster en Arquitectura Big Data

Gracias a Euroinnova he podido obtener esta titulación que me era exigida en el trabajo. Ahora que sé lo sencillo que es ir superando cada tema, por la buena estructura de los contenidos en este tipo de másteres online, seguiré formándome en el centro.

Eduardo M

MADRID

Opinión sobre Máster en Arquitectura Big Data

Gracias a este máster he obtenido la titulación que me requerían en un puesto de trabajo y de la manera más cómoda posible al ser online. Completaría esta formación con más supuestos prácticos que pongan a prueba todo lo aprendido.
* Todas las opiniones sobre Máster en Arquitectura Big Data, aquí recopiladas, han sido rellenadas de forma voluntaria por nuestros alumnos, a través de un formulario que se adjunta a todos ellos, junto a los materiales, o al finalizar su curso en nuestro campus Online, en el que se les invita a dejarnos sus impresiones acerca de la formación cursada.
Alumnos

Plan de estudios de Master arquitectura big data

MASTER ARQUITECTURA BIG DATAAprovecha la oportunidad que te ofrece Euroinnova para desarrollar las habilidades y competencias profesionales necesarias para cumplir tus objetivos en el ámbito laboral, y además al mejor precio. ¡No esperes más y solicita información sin compromiso!

Resumen salidas profesionales
de Master arquitectura big data
Estamos en una sociedad en la que la información es oro y el Big Data se ha convertido en la tecnología que todas las empresas quieren utilizar para su desarrollo y progreso. Gracias a este Master en Arquitectura Big Data verás cómo, gracias a la minería y análisis de información masiva mediante diferentes herramientas que el Big Data ofrece podrás llevar a cabo la transformación digital de cualquier empresa de forma efectiva. Además, aprenderás a aplicar algoritmos de Inteligencia artificial, Machine learning y Deep learning que permitan crear sistemas de decisión, elección y recomendación actualizados y efectivos. Contarás con un equipo de profesionales especializados en la materia. Además, gracias a las prácticas garantizadas, podrás acceder a un mercado laboral en plena expansión. gital, business intelligence, data science, minería de datos, análisis de datos, visualización de datos, bases de datos, inteligencia artificial, machine learning, Deep learning, visión artificial, procesamiento de lenguaje natural, chatbots.
Objetivos
de Master arquitectura big data
- Establecer los criterios y pasos a seguir para conseguir llevar a cabo una transformación digital efectiva. - Aprender cómo el Big Data puede afectar positivamente en todos los procesos y tareas de una empresa. - Entender la arquitectura Big Data y cómo llevar a cabo una minería y análisis de datos efectiva. - Elaborar informes de visualización de datos profesionales mediante diferentes herramientas como PowerBI o Tableau. - Utilizar algoritmos de inteligencia artificial, machine learning y Deep Learning aplicados al Big Data. - Saber cómo aplicar el procesamiento de lenguaje natural (PLN) para la creación de chatbots. - Crear modelos de visión artificial aplicables a la nueva industria 4.0 utilizando Python y OpenCV.
Salidas profesionales
de Master arquitectura big data
El Big Data es uno de los sectores laborales con mayor demanda en la actualidad por lo que, si llevas a cabo este Master en Arquitectura Big Data, se te abrirán las puertas de multitud de perfiles como Arquitecto Big Data, Data Scientist, IA Engineer, Machine Learning Developer, Programador de visión artificial o Experto en soluciones de Business Intelligence.
Para qué te prepara
el Master arquitectura big data
Gracias a este Master en Arquitectura Big Data verás cómo, gracias a la minería y análisis de información masiva mediante diferentes herramientas que el Big Data ofrece podrás llevar a cabo la transformación digital de cualquier empresa de forma efectiva. Además, aprenderás a aplicar algoritmos de Inteligencia artificial, Machine learning y Deep learning que permitan crear sistemas de decisión, elección y recomendación actualizados y efectivos.
A quién va dirigido
el Master arquitectura big data
Este Master en Arquitectura Big Data está pensado para profesionales informáticos o de gestión de empresas que busquen una formación actualizada para aprender a utilizar el Big Data en la transformación digital de cualquier empresa utilizando las principales herramientas y tecnologías para analizar, gestionar y visualizar información de la forma más profesional posible.
Metodología
de Master arquitectura big data
Metodología Curso Euroinnova
Carácter oficial
de la formación
La presente formación no está incluida dentro del ámbito de la formación oficial reglada (Educación Infantil, Educación Primaria, Educación Secundaria, Formación Profesional Oficial FP, Bachillerato, Grado Universitario, Master Oficial Universitario y Doctorado). Se trata por tanto de una formación complementaria y/o de especialización, dirigida a la adquisición de determinadas competencias, habilidades o aptitudes de índole profesional, pudiendo ser baremable como mérito en bolsas de trabajo y/o concursos oposición, siempre dentro del apartado de Formación Complementaria y/o Formación Continua siendo siempre imprescindible la revisión de los requisitos específicos de baremación de las bolsa de trabajo público en concreto a la que deseemos presentarnos.

Temario de Master arquitectura big data

Descargar GRATIS
el temario en PDF
  1. Introducción a la transformación digital
  2. Concepto de innovación
  3. Concepto de tecnología
  4. Tipología de la tecnología
  5. Punto de vista de la ventaja competitiva
  6. Según su disposición en la empresa
  7. Desde el punto de vista de un proyecto
  8. Otros tipos de tecnología
  9. La innovación tecnológica
  10. Competencias básicas de la innovación tecnológica
  11. El proceso de innovación tecnológica
  12. Herramientas para innovar
  13. Competitividad e innovación
  1. Filosofía Web 3.0 y su impacto en el mundo empresarial
  2. Socialización de la Web
  3. Adaptación del mundo empresarial a las Nuevas tecnologías
  1. Community Manager
  2. Chief Data Officer
  3. Data Protection Officer
  4. Data Scientist
  5. Otros perfiles
  6. Desarrollo de competencias informáticas
  7. El Papel del CEO como líder en la transformación
  1. La transición digital del modelo de negocio tradicional
  2. Nuevos modelos de negocio
  3. Freemium
  4. Modelo Long Tail
  5. Modelo Nube y SaaS
  6. Modelo Suscripción
  7. Dropshipping
  8. Afiliación
  9. Infoproductos y E-Learning
  10. Otros
  1. Diagnóstico de la madurez digital de la empresa
  2. Análisis de la innovación en la empresa
  3. Elaboración del roadmap
  4. Provisión de financiación y recursos tecnológicos
  5. Implementación del plan de transformación digital
  6. Seguimiento del plan de transformación digital
  1. BBVA y la empresa inteligente
  2. DKV Salud y #MédicosfrentealCOVID
  3. El Corte Inglés
  4. Cepsa y su apuesta por los servicios cloud de AWS
  1. Rediseñando el customer experience
  2. La transformación de los canales de distribución: omnicanalidad
  3. Plan de marketing digital
  4. Buyer´s Journey
  5. Growth Hacking: estrategia de crecimiento
  6. El nuevo rol del marketing en el funnel de conversión
  1. Oportunidades de innovación derivadas de la globalización
  2. Como Inventar Mercados a través de la Innovación
  3. Etapas de desarrollo y ciclos de vida
  4. Incorporación al mercado
  5. Metodologías de desarrollo
  1. La transformación digital de la cadena de valor
  2. La industria 4.0
  3. Adaptación de la organización a través del talento y la innovación
  4. Modelos de proceso de innovación
  5. Gestión de innovación
  6. Sistema de innovación
  7. Como reinventar las empresas innovando en procesos
  8. Innovación en Procesos a través de las TIC
  9. El Comercio Electrónico: innovar en los canales de distribución
  10. Caso de estudio voluntario: La innovación según Steve Jobs
  11. Caso Helvex: el cambio continuo
  12. La automatización de las empresas: RPA, RBA y RDA
  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. Hadoop
  2. Pig
  3. Hive
  4. Sqoop
  5. Flume
  6. Spark Core
  7. Spark 2.0
  1. Fundamentos de Streaming Processing
  2. Spark Streaming
  3. Kafka
  4. Pulsar y Apache Apex
  5. Implementación de un sistema real-time
  1. Hbase
  2. Cassandra
  3. MongoDB
  4. NeoJ
  5. Redis
  6. Berkeley DB
  1. Arquitectura Lambda
  2. Arquitectura Kappa
  3. Apache Flink e implementaciones prácticas
  4. Druid
  5. ElasticSearch
  6. Logstash
  7. Kibana
  1. Amazon Web Services
  2. Google Cloud Platform
  1. Administración e Instalación de clusters: Cloudera y Hortonworks
  2. Optimización y monitorización de servicios
  3. Seguridad: Apache Knox, Ranger y Sentry
  1. Herramientas de visualización: Tableau y CartoDB
  2. Librerías de Visualización: D, Leaflet, Cytoscape
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Procesos de extracción, transformación y carga de datos (ETL)
  3. Data Warehou
  4. Herramientas de Explotación
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. ¿Qué es la visualización de datos?
  2. Importancia y herramientas de la visualización de datos
  3. Visualización de datos: Principios básicos
  1. ¿Qué es Tableau? Usos y aplicaciones
  2. Tableau Server: Arquitectura y Componentes
  3. Instalación Tableau
  4. Espacio de trabajo y navegación
  5. Conexiones de datos en Tableau
  6. Tipos de filtros en Tableau
  7. Ordenación de datos, grupos, jerarquías y conjuntos
  8. Tablas y gráficos en Tableau
  1. Fundamentos D3
  2. Instalación D3
  3. Funcionamiento D3
  4. SVG
  5. Tipos de datos en D3
  6. Diagrama de barras con D3
  7. Diagrama de dispersión con D3
  1. Visualización de datos
  2. Tipologías de gráficos
  3. Fuentes de datos
  4. Creación de informes
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. Introducción a Power BI
  2. Instalación de Power BI
  3. Modelado de datos
  4. Visualización de datos
  5. Dashboards
  6. Uso compartido de datos
  1. CartoDB
  2. ¿Qué es CARTO?
  3. Carga y uso de datos. Tipos de análisis
  4. Programación de un visor con la librería CARTO.js
  5. Uso de ejemplos y ayudas de la documentación de la API
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. La visión artificial: definiciones y aspectos principales
  1. Ópticas
  2. Iluminación
  3. Cámaras
  4. Sistemas 3D
  5. Sensores
  6. Equipos compactos
  7. Metodologías para la selección del hardware
  1. Algoritmos
  2. Software
  3. Segmentación e interpretación de imágenes
  4. Metodologías para la selección del software
  1. Aplicaciones clásicas: discriminación, detección de fallos…
  2. Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)

Titulación de Master arquitectura big data

TITULACIÓN expedida por EUROINNOVA INTERNATIONAL ONLINE EDUCATION, miembro de la AEEN (Asociación Española de Escuelas de Negocios) y reconocido con la excelencia académica en educación online por QS World University Rankings
EUROINNOVA
EURO_DIPLOMA

Cursos relacionados

Curso en Data Science y Análisis de Datos
Curso en Data Science y Análisis de Datos
4,8
360 €
Maestría en Inteligencia Artificial. RVOE SEP: M-015/2023 (16/05/2023)
Maestría en Inteligencia Artificial. RVOE SEP: M-015/2023 (16/05/2023)
4,8
4737 €
Máster Oficial Universitario en Data Science + 60 Créditos ECTS
Máster Oficial Universitario en Data Science + 60 Créditos ECTS
4,8
3495 €
CURSO DE IA GENERATIVA EN LA ENSEÑANZA: Curso de Inteligencia Artificial Generativa en la Enseñanza (Titulación Universitaria + 3 Créditos ECTS)
CURSO DE IA GENERATIVA EN LA ENSEÑANZA: Curso de Inteligencia Artificial Generativa en la Enseñanza (Titulación Universitaria + 3 Créditos ECTS)
4,8
30 €
Euroinnova Business School
Isaías Aranda Cano Aranda Cano
Tutor
Grado Superior en Administración de Sistemas Informáticos.
Su formación +
Linkedin Euroinnova
Euroinnova Business School
Rafael Marín Sastre
Tutor
Titulado Universitario 1 ciclo o Diplomado en Ingeniería Técnica en Informática de Sistemas Administrador de Servidores y páginas web Curso Superior en Ciberseguridad Curso de Business Intelligence y Big Data Formación de formadores E-learning
Su formación +
Linkedin Euroinnova
Euroinnova Business School
Daniel Cabrera Armenteros
Tutor
Licenciado en Ciencias Físicas y con Máster en Implantación, Gestión y Auditoría de Sistemas de Seguridad de Información ISO 27001-27002.
Su formación +
Linkedin Euroinnova
Euroinnova Business School
Alan
Tutor
Ingeniero informático
Su formación +
Linkedin Euroinnova
Euroinnova Business School
Jorge
Tutor
Graduado en Matemáticas por la Universidad de Valencia y con el Máster de Profesorado.
Su formación +
Linkedin Euroinnova

7 razones para realizar el Master arquitectura big data

1
Nuestra experiencia

Más de 20 años de experiencia en la formación online.

Más de 300.000 alumnos ya se han formado en nuestras aulas virtuales.

Alumnos de los 5 continentes.

25% de alumnado internacional.

Las cifras nos avalan
Logo google
4,7
2.625 Opiniones
Logo youtube
8.582
suscriptores
Logo facebook
4,4
12.842 Opiniones
Logo youtube
5.856
Seguidores
2
Nuestra Metodología

Flexibilidad

aprendizaje_100_online_flexible_desde_donde_quieras_y_como_quieras

Docentes

Equipo docente especializado. Docentes en activo, digitalmente nativos

Acompañamiento

No estarás solo/a. Acompañamiento por parte del equipo de tutorización durante toda tu experiencia como estudiante.

Aprendizaje real

Aprendizaje para la vida real, contenidos prácticos, adaptados al mercado laboral y entornos de aprendizaje ágiles en campus virtual con tecnología punta

Seminarios

Seminarios en directo. Clases magistrales exclusivas para los estudiantes

3
Calidad AENOR

Se llevan a cabo auditorías externas anuales que garantizan la máxima calidad AENOR.

Nuestros procesos de enseñanza están certificados por AENOR por la ISO 9001 y 14001.

Certificación de calidad
4
Confianza

Contamos con el sello de Confianza Online y colaboramos con las Universidades más prestigiosas, Administraciones Públicas y Empresas Software a nivel Nacional e Internacional.

Confianza logo Proteccion logo
5
Empleo y prácticas

Disponemos de Bolsa de Empleo propia con diferentes ofertas de trabajo, y facilitamos la realización de prácticas de empresa a nuestro alumnado.

6
Nuestro Equipo

En la actualidad, Euroinnova cuenta con un equipo humano formado por más de 300 profesionales. Nuestro personal se encuentra sólidamente enmarcado en una estructura que facilita la mayor calidad en la atención al alumnado.

7
Somos distribuidores de formación

Como parte de su infraestructura y como muestra de su constante expansión, Euroinnova incluye dentro de su organización una editorial y una imprenta digital industrial.

Paga como quieras

Financiación 100% sin intereses

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Euroinnova.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

25%
Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método EUROINNOVA, ofrecemos una beca del 25% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20%
Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15%
Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15%
Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 900 831 200 o vía email en formacion@euroinnova.es

* Becas no acumulables entre sí

* Becas aplicables a acciones formativas publicadas en euroinnova.es

Materiales entregados con el Master arquitectura big data

Información complementaria

Master Arquitectura Big Data

¿Qué es el big data?

El big data es una combinación de datos estructurados, semiestructurados y no estructurados que son recopilados por organizaciones que pueden extraerse para obtener información y ser usada en proyectos de aprendizaje automático, modelado predictivo y otras aplicaciones de análisis avanzado.

Los sistemas que procesan y almacenan el big data se han convertido en un componente común de las arquitecturas de gestión de datos en las organizaciones, combinados con herramientas que respaldan los usos de análisis del big data. El big data también se caracteriza por las tres V:

  • El gran volumen de datos en muchos entornos.
  • La amplia variedad de tipos de datos almacenados con frecuencia en los grandes sistemas de datos.
  • La velocidad a la que gran parte de los datos se generan, recopilan y procesan.

MASTER ARQUITECTURA BIG DATA

¿Por qué es importante el Big Data?

Las empresas usan el big data en sus sistemas para mejorar las operaciones, brindar un mejor servicio al cliente, crear campañas de marketing personalizadas y tomar otras acciones que, en última instancia, pueden aumentar los ingresos y las ganancias. Las empresas que lo utilizan de manera eficaz tienen una ventaja competitiva potencial sobre la que no lo hacen porque pueden tomar decisiones comerciales mucho más rápidas e informadas.

Por ejemplo, los macrodatos proporcionan información valiosa sobre los clientes que las empresas pueden utilizar para perfeccionar su marketing, publicidad y promociones con el fin de aumentar la participación de los clientes y las tasas de conversión. Tanto los datos históricos como en tiempo real se pueden analizar para evaluar las preferencias cambiantes de los consumidores o compradores corporativos, lo que permite a las empresas responder mejor a los deseos y necesidades de los clientes.

Ejemplos de como se usa el big data

A continuación veremos algunos ejemplos de como el big data es usado en diferentes aspectos:

  • En la industria de la energía, los grandes datos ayudan a las empresas de petróleo y gas a identificar posibles ubicaciones de perforación y monitorear las operaciones de los oleoductos, del mismo modo, las empresas de servicios públicos lo utilizan para rastrear las redes eléctricas.
  • Las empresas de servicios financieros utilizan sistemas de macrodatos para la gestión de riesgos y el análisis en tiempo real de los datos del mercado.
  • Los fabricantes y las empresas de transporte confían en los grandes datos para gestionar sus cadenas de suministros y así optimizar las rutas de entrega.
  • Otros usos gubernamentales incluyen la respuesta a emergencias, la prevención del delito y las iniciativas de ciudades inteligentes.

¿Cómo funciona el análisis de Big Data?

Con el fin de obtener resultados válidos y relevantes de las aplicaciones de análisis de big data, los científicos de datos y otros analistas de datos deben tener una comprensión detallada de los datos disponibles y una idea de lo que están buscando ellos. Eso hace que la preparación de datos, que incluyen la creación de perfiles, la limpieza, la validación y la transformación de conjuntos de datos, sea un primer paso crucial en el proceso de análisis.

Una vez que los datos se han recopilado y preparado para el análisis, se pueden aplicar varias disciplinas de ciencia de datos y análisis avanzado para ejecutar diferentes aplicaciones, utilizando herramientas que brindan características y capacidades de análisis de big data. Esas disciplinas incluyen el aprendizaje automático y su rama de aprendizaje profundo, modelado predictivo, minería de datos, análisis estadístico, análisis de transmisión, minería de texto y más.

Mediante la realización de este Master Arquitectura Big Data, podrás conocer todos los aspectos importantes y fundamentales con relación al Big Data y como se organiza, puesto que contamos con profesionales del sector que te ayudaran a comprender mejor esta ciencia y te motivarán a conseguir tus objetivos mediante nuestros métodos de enseñanza perfectamente optimizados para la impartición de forma online, gracias a la cual podrás acceder al curso desde cualquier parte del mundo.

Master en arquitectura big data

Si te interesa este sector y quieres seguir profundizando sobre el big data, te recomendamos el siguiente post de nuestro blog: https://www.euroinnova.edu.es/blog/big-data

Metodología online de Euroinnova International Online Education

Este Master Big Data se imparte de manera 100% online, la cual te permite llevar un ritmo de estudio cómodo, para compaginar tu formación con cualquier actividad personal o laboral.

¿Dónde estudiar Master en Big Data Online? ¿Por qué deberías elegir Euroinnova International Online Education para tu formación?

En Euroinnova queremos ofrecerte una formación con Calidad Europea, que te permita conciliar el trabajo con el estudio, así como la posibilidad de escoger el curso que mejor se adapte a tus necesidades y preferencias. Trabajamos para ayudarte en tu crecimiento personal y profesional con la realización de este curso.

¿Te interesa este sector? Haz clic aquí y encuentra la formación que mejor se adapte a tus necesidades.

¡No pierdas esta oportunidad y empieza ya tu formación con este Master Online Big Data!

Preguntas al director académico sobre el Master arquitectura big data

¿Tienes dudas?
Llámanos gratis al 900 831 200